

电压型双轴双路倾角开关

产品规格书 (Product Specification)

型号: LCT644T

一、产品介绍

LCT644T 是一款电压型双轴双路倾角开关;当倾斜角度大于预设的报警角度时(出厂默认 5°),将会输出电压信号(输出电压等于输入电压),在使用时只需要把对应的线色接在报警灯或控制设备上即可。

产品默认测量范围是 $0~\pm90^\circ$, 需要其它量程可选 ; 测量精度 0.1° , 分辨率 0.01° 。

产品设计精密、可靠,集成了短路、瞬间高压、极性、浪涌等全面保护功能,适应各种恶劣工业环境。报警阈值在出厂时经过标定,用户也可自行设置报警角度阈值。

产品支持 RS232、RS485、TTL 等串口通讯,在自动化控制、机械调平、安全监测等领域得到广泛应用。

二、应用场景

- 塔杆、风力发电设备
- 桥梁健康监测
- 云台调平、高空作业车
- 边坡等地质灾害领域
- 钻进机、海上平台

- 危房、古建筑
- 高支模、基坑监测
- 医疗设备
- 各种工程机械角度控制
- 高精度激光平台

2

三、性能参数

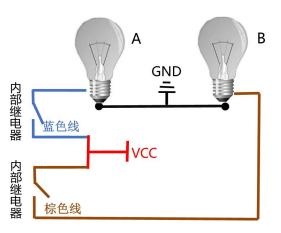
参数	条件	LCT644T	单位				
测量范围		0~±90	٥				
测量轴		X、Y轴					
报警轴		X、Y轴					
检测频率		100	Hz				
分辨率		0.01	o				
精度	-40 ~ +85°C	0.1	٥				
长期稳定性	-40 ~ +85°C	<0.12	0				
上电启动时间		0.5	S				
工作电压		DC5V 或 9~36V					
工作电流		45mA					
输出信 号		输出电压等于输入电压(常开或常闭)					
平均工作时间		≥55000 小时/次					
零点温度漂移		±0.01°/°C					
抗震动		10grms、10~1000Hz					
绝缘电阻		≥100MΩ					
防水等级		IP67 或 IP68 可选					
电缆线	†	示配 1.5 米长度、耐磨、防油、宽温、屏蔽电缆线 6*0.2					
重量		180g (不含包装盒)					

四、电气连接

LCT644T 接线图

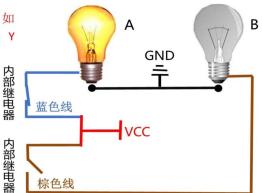
3

线色 功能	红	<u> </u>	绿	黄	蓝	棕
RS232	VCC	GND	RXD	TXD	OUT X	OUT Y
RS485	VCC	GND	(B, D-)	(A、D+)	OUT X	OUT Y
TTL	VCC	GND	RXD	TXD	OUT X	OUT Y

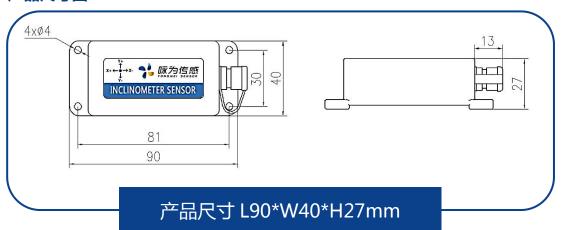

注意: 1、客户可以把传感器连接到上位机,通过软件设定报警阀值,(-X、+X、-Y、+Y)可分别设置不同的值。

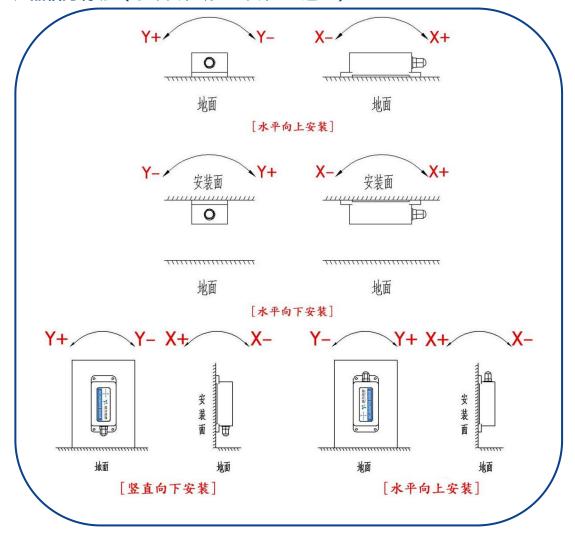
- 2、LCT644T 电压型双轴双路倾角开关,则当 X 轴方向角度的绝对值大于 X 方向报警角度值时,蓝色线输出电压量(输出电压 5V 或 VCC 电压值),如果您需要驱动一个报警灯或电磁阀,用蓝色线接到您的报警灯或者电磁阀上,当倾角报警发生时,蓝色线输出电压,驱动报警灯或电磁阀。
 - 3、Y 轴控制棕线,使用方法和 X 轴控制的蓝线相同。

继电器内部工作原理


- 1、默认报警角度为5°(用户可自行设置)
- 2、默认初始时 继电器为断开状态。如下图所示

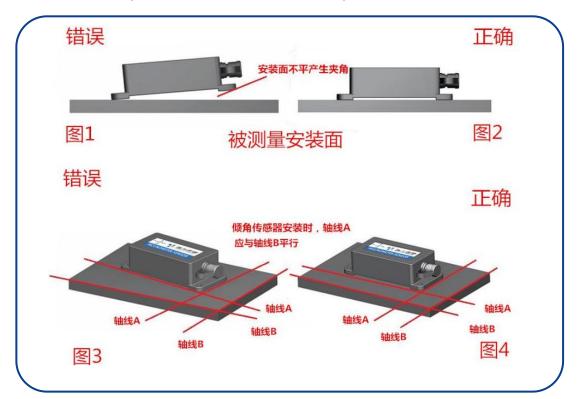
以 X 轴为例,当传感器达到预设报警角度时(如 10°),内部继电器闭合,蓝线在内部导通,灯 A 亮; Y 轴控制棕线,使用方法和蓝线相同。



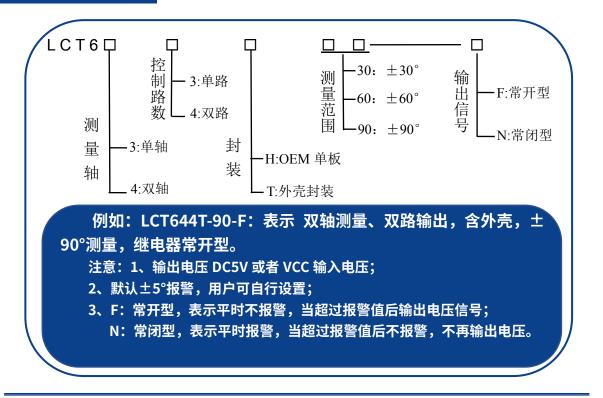


五、尺寸与安装

1. 产品尺寸图



2. 产品轴向说明 (水平安装或竖直安装 二选一)



3. 产品轴向说明 (水平安装或竖直安装 二选一)

六、订购说明

六、配套软件

此软件可以在无锡咏为传感科技官方网站上下载(www.ywsensor.com);软件可以更加直观的观测数据,同时可以对传感器进行设置。

软件使用简要说明:

- (1)选择 串口:把USB 转串口模块插在电脑上后 刷新串口选择即可
- (2)配置 波特率: 一般出厂默认 9600
- (3)设备类型:选择 倾角传感器
- (4) 协议类型: 一般是 68 协议
- (5)设备地址:一般出厂默认为 0
- (6) 打开串口: 软件上即可显示角度

对传感器进行各种操作设置后,一定发送 掉电保存 指令。

八、数据格式

1.1 数据帧格式:(8 位数据位,1 位停止位,无校验,默认速率 9600)

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68					

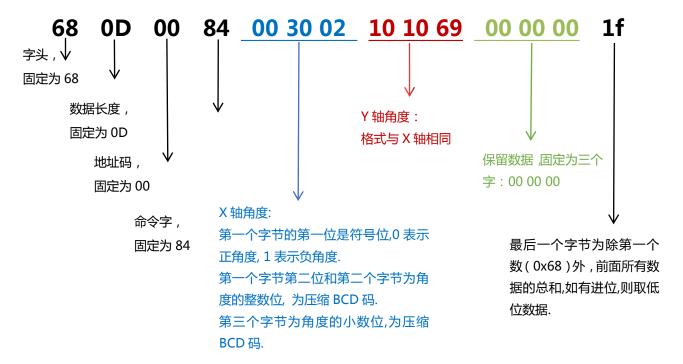
数据格式:16进制

标示符: 固定为 0x68

数据长度:从数据长度到校验和(包括校验和)的长度

地址码:采集模块的地址,默认为00

数据域:根据命令字不同内容和长度相应变化


校验和:数据长度、地址码、命令字和数据域的和,不考虑进位

(注意: 当命令字或数据域变化时 检校和也会变化。 当您改变数据域时请相应改

变检校和。)

1.2 例如应答命令: 68 0D 00 84 00 03 02 10 10 69 00 00 00 1f

表示 X轴: +03.02°, Y轴: -10.69°

2 命令格式

2.1 读 X 轴角度

发送命令: 68 04 00 01 05

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68	0x04	0x00	0x01		0x05

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(3byte)	(1byte)
0x68			0x81	SXXX.YY	

注:数据域为3字节返回角度值,为压缩BCD码,S为符号位(0正,1负),XXX为三位整数值,YY为两位小数值。其他轴数据与此相同。如003578表示+35.78°。

2.2 读 Y 轴角度

发送命令: 68 04 00 02 06

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68			0x02		

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(3byte)	(1byte)
0x68			0x82		

2.3 读 X、Y 轴角度

发送命令: 68 04 00 04 08

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68			0x04		

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(9byte)	(1byte)
0x68			0x84		

2.4 设置相对/绝对零点

发送命令: 68 05 00 05 00 0A

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x05	0x00: 绝对零点 0x01: 相对零点	

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x85	0x00: 设置成功 0xFF: 设置失败	

注:如果设置为 绝对零点,则测量角度以出厂设置的零点为基准。如果设成相对零点,则测量角度以当前位置为零点基准。

2.5 查询相对/绝对零点

发送命令: 68 04 00 0D 11

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68			0x0D		

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x8D	0x00: 绝对零点 0xFF: 相对零点	

2.6 设置报警角度

发送命令: 68 08 00 20 00 10 15 00 4D

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(4byte)	(1byte)
0x68			0x20	ASXXX.YY	

注:数据域为 4 字节返回角度值,为压缩 BCD 码; A 为轴位(00 为 X 轴正,01 为 Y 轴正,02 为 X 轴负,03 为 Y 轴负); S 为符号位(0 正,1 负) XXX 为三位整数值,YY 为小数值。其他轴数据与此相 同。如 00101500 表示 X 轴的报警值为-15°。

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0xA0	0x00: 绝对零点 0xFF: 相对零点	

2.7 查询报警角度

发送命令:68 05 00 21 01 27

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x21	0x00: x 轴 0x01: y 轴 0x02: -x 轴 0x03: -y 轴	

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(3byte)	(1byte)
0x68			0xA1	SXXX.YY	

注:数据域为 3 字节返回角度值,为压缩 BCD 码; S 为符号位(0 正,1 负) XXX 为三位整数值, YY 为小数值。其他轴数据与此相 同。如 00101500 表示 X 轴的报警值为-15°。

2.8 设置报警角度延时时间

发送命令: 68 05 00 22 02 29

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x22		

注: 延时时间单位(s) 68 05 00 22 02 29 表示设置报警延时时间为 2s, 默认报警延时时间 0s

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0xA2	0x00: 绝对零点 0xFF: 相对零点	

2.9 查询报警角度延时时间

发送命令: 68 04 00 23 27

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x23		

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0xA3		

11

注:读出来的数据域时间单位为(s)

2.10 设置通讯速率

发送命令: 68 05 00 0B 04 14

	示符	数据长度	地址码	命令字	数据域	校验和
	byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0.	x68			0x0B		

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x8B	0x00: 设置成功 0xFF: 设置失败	

注: 0x00 表示 2400 0x01 表示 4800 0x02 表示 9600 0x03 表示 19200,0x04 表示 115200; 默认波特率 9600. 如果设置波特率为 115200,则发送命令为 68 05 00 0B 04 14; 每次变更通讯波特率成功之后,会以原波特率发送回应答命令,然后立即改变设备通信波特率。

2.11 设置角度模式

发送命令: 68 05 00 0C 00 11

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x0C	0x00: 问答式 0x01: 5Hz 0x02: 15Hz 0x03: 25Hz 0x04: 35Hz 0x05: 50Hz	

^{*}默认 问答输出模式; 5Hz 意味着每秒自动输出 5次数据,其他以此类推。

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x8C	0x00: 设置成功 0xFF: 设置失败	

^{*}当产品被设置成自动输出模式时,产品上电后10秒内将没有输出,此时可对产品进行设置操作等。

2.12 设置模块地址

发送命令: 68 05 00 0F 01 15

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x0F	XX 模块地址	

注意: 传感器默认的地址为 00。

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x8F	0x00: 设置成功 0xFF: 设置失败	

- 1、多个传感器同时连接在一组总线上,例如 RS485,则需将每个传感器设置成不同地址。
- 2、模块地址从 00 致 EF 范围。

2.13 查询模块地址

发送命令: 68 04 00 1F

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(0byte)
0x68			0x1F		

^{*}查询模块地址不考虑校验位。

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x1F		

2.14update flash(保存设置)

发送命令: 68 04 00 0A 0E

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68			0x0A		

应答命令:

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x8A	0x00: 设置成功 0xFF: 设置失败	

^{*}对于各种参数设置,设置完成后一定要发送"保存设置"命令,否则断电后这些设置都将消失。

2.15 恢复出厂设置

发送命令: 68 04 00 0E 12

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)
0x68			0x0E		

标示符	数据长度	地址码	命令字	数据域	校验和
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(1byte)
0x68			0x8E	0x00: 设置成功 0xFF: 设置失败	

生产执行标准参考

- ●企业质量体系标准:ISO9001:2015 标准(认证号:328406)
- ●倾角传感器生产标准: GB/T 191 SJ 20873-2003 倾斜仪、水平 仪通用规范
- ●倾角传感器计量院校准标准:JJF1119-2004 电子水平仪校准规范
- ●陀螺加速度测试标准:QJ 2318-92 陀螺加速度计测试方法
- ●光纤陀螺仪测试方法: GJB 2426A-2004
- ●产品环境试验检测标准:GJB150
- ●电磁抗干扰试验标准: GB/T 17626
- ●版本: VT(2021-2022)
- ●修订日期:2021.08.02

无锡咏为传感科技有限公司 • 江苏省无锡市新吴区菱湖大道 111 号

无锡国家软件园天鹅座 D 栋 301 室

联系电话:15906180154